Activation of Actuating Hydrogels with WS2 Nanosheets for Biomimetic Cellular Structures and Steerable Prompt Deformation. Zong, L., Li, X., Han, X., Lv, L., Li, M., You, J., & Li, C. (2017). ACS applied materials & interfaces, 9(37), 32280-32289.-成果-仿生智能材料研究组  
Activation of Actuating Hydrogels with WS2 Nanosheets for Biomimetic Cellular Structures and Steerable Prompt Deformation. Zong, L., Li, X., Han, X., Lv, L., Li, M., You, J., & Li, C. (2017). ACS applied materials & interfaces, 9(37), 32280-32289. 2017 绿色生物基 智能软物质 绿色环保材料 论文
lvll 2019-6-18 2927

Macroscopic soft actuation is intrinsic to living organisms in nature, including slow deformation (e.g., contraction, bending, twisting, and curling) of plants motivated by microscopic swelling and shrinking of cells, and rapid motion of animals (e.g., deformation of jellyfish) motivated by cooperative nanoscale movement of motor proteins. These actuation behaviors, with an exceptional combination of tunable speed and programmable deformation direction, inspire us to design artificial soft actuators for broad applications in artificial muscles, nanofabrication, chemical valves, microlenses, soft robotics, etc. However, so far artificial soft actuators have been typically produced on the basis of poly( N-isopropylacrylamide) (PNiPAM), whose deformation is motived by volumetric shrinkage and swelling in analogue to plant cells, and exhibits sluggish actuation kinetics. In this study, alginate-exfoliated WS2 nanosheets were incorporated into ice-template-polymerized PNiPAM hydrogels with the cellular microstructures which mimic plant cells, yet the prompt steerable actuation of animals. Because of the nanosheetreinforced pore walls formed in situ in freezing polymerization and reasonable hierarchical water channels, this cellular hybrid hydrogel achieves super deformation speed (on the order of magnitude of 10° s), controllable deformation direction, and high near-infrared light responsiveness, offering an unprecedented platform of artificial muscles for various soft robotics and devices (e.g., rotator, microvalve, aquatic swimmer, and water-lifting filter).

 


最新回复 (0)
返回
发新帖
作者最近主题: