Versatile Deprotonation-Induced Exfoliation and Functionalization of Biological Nanofibrils for Actuation and Fluorescence.ACS Appl. Mater. Interfaces 2024. Bailang Zhang , Ting Wang, Mingjie Li, Minghao Mu, Zheng Wang, Yuwei Chen, and Chaoxu Li.-成果-仿生智能材料研究组  
Versatile Deprotonation-Induced Exfoliation and Functionalization of Biological Nanofibrils for Actuation and Fluorescence.ACS Appl. Mater. Interfaces 2024. Bailang Zhang , Ting Wang, Mingjie Li, Minghao Mu, Zheng Wang, Yuwei Chen, and Chaoxu Li.
wangsuxv 2月前 333

Biological nanofibrils not only are characteristic of many species of biomasses but also serve as a promising type of sustainable nanomaterials for various applications. However, their production has long relied on an invasive and energy-consuming mechanical shear. A noninvasive and versatile approach remains challenging to exfoliate different types of biomasses into nanofibrils. In this study, we showed a versatile and nonaggressive intercalative deprotonation agent of organic base, which could efficiently deprotonate various biomasses for energy-saving exfoliation and functionalization, including cellulose, chitin, and silk. Both carboxylic nanofibrils and nanofibrils with pristine chemical structures could be produced in high yields through manual shaking or sonication. By further grafting photoresponsive groups via transesterification, intelligent NFs were generated featuring ultraviolet-responsive fluorescence and hydrophilicity. These responsive fluorescence and actuation behaviors promised their potential as green encryption and anticounterfeiting nanomaterials.

DOI:10.1021/acsami.4c02579

最新回复 (0)
返回
发新帖
作者最近主题: